

A Behavioural Safety Centric Approach for E2E ADS

Gareth Price: SOTIF & Safety Specialist

The26262Club | March 2025

Agenda

- Introduction to E2E AI
- Behavioural Competencies (BC)
- ML and BCs
- Influential ODD attributes
- Coverage strategy
- Measuring success

Confidential. Please do not distribute.

Disclaimers and Caveats (my safety net)

- Examples are illustrative, they do not target any particular autonomy level and are not expected to be complete
- Some illustrations assume end-to-end automated driving system
- The presented strategy targets ADS but is extendable to other applications

Wayve Introduction

Wayve Overview

Reimagining autonomous mobility with Embodied Intelligence Developing end-to-end deep learning for driving since 2017.

2018	First to show an <u>end-to-end deep learning driving</u> policy.
2020	Expanded <u>operations to London</u> , demonstrating a safe deployment and testing framework for end-to-end Al.
2022	Demonstrated generalisation to new vehicles and cities.
2023	First <u>vision-language-action model</u> for driving and <u>GenAl</u> <u>for simulation</u>
2024	First to test same driving model in <u>US</u> & UK
2025	First to test same driving model in <u>US</u> & UK & <u>DE</u>

Years of expertise have enabled Wayve to deliver industry leading performance, with efficient use of data and compute.

Our mission is to reimagine autonomous mobility with embodied intelligence

We call this next-generation approach, AV2.0

BUILT FOR ANY VEHICLE

BUILT FOR ANY ENVIRONMENT

BUILT FOR GLOBAL SCALE

AV1.0

Conventional Autonomous Driving System

Robotics-inspired architecture

Each module is developed for a specific task and tied through rule-based designs; errors can compound across modules

Localization with centimeter-accurate HD maps in real-time is the key to this approach

AV2.0

End-to-end (e2e) Al System

An Al-driven, streamlined solution that combines perception, prediction, and planning into a single end-to-end neural network.

Transforms raw sensor data into safe driving actions

Data-driven approach enables efficient improvements through scaling data

Novigating through around and tomporary roadworks

Right turn on red light (prohibited in the UK)

Navigating through crowds and temporary roadworks

First drive in snow (never seen during training)

Zero shot generalization on one-lane country road

World-leading Embodied AI Science

AI EXPLAINABILITY

PHOTOREALISTIC SYNTHETIC DATA

FUTURE PREDICTION

LINGO-1 First language model for self-driving

PRISM-1
End-to-end data driven simulation

GAIA-1 First generative world model

What makes an ADS Safe?

What makes an ADS Safe?

confidence that the ADS exhibits safe driving skills within the ODD

- 1) Check that:
 - The ADS understands the main driving rules and associated decisions (i.e. skills)
 - e.g. stopping at a signalised intersection, yielding at a roundabout
 - The ADS can safely apply those skills in various real-world situations (i.e. ODD)
 - e.g. stopping at a signalised intersection in bad weather
 - e.g yielding at a roundabout under heavy traffic
- 1) Gain a certain level of confidence that the above is true

Confidential. Please do not distribute

Defining Driving Skills

Intended behaviour proven across ODD = competency acquired

A Behavioural Competency (BC) is:

"The ability to handle <u>segments and nodes</u> of the road topology to achieve a strategic <u>goal</u> whilst respecting a <u>set of rules</u>".

- e.g. The ability to turn left [goal] at a roundabout [node].
- e.g. The ability to stop [goal] at a zebra crossing [node]
- e.g. The ability to go straight [goal] at an intersection [node].

Note 1 BCs are mostly ODD agnostic except at the road topology level
Note 2 The applicable rules vary depending on the goal
therefore the goal is part of the BC definition

[DriveSafeAl blog @ drive-safe.ai]

DriveSafe AI: developing the evidence base for advanced safety assurance methods for assisted and automated vehicles

Funded by the UK Government's Centre for Connected and Automated Vehicles. Visit **drive-safe.ai** for more information.

What does it take to learn driving?

What does it take to learn driving?

Theoretical Learning

 Learn the rules of the road that dictate driving decisions

Examples used in this presentation

Ex.1: Zebra crossings

Ex.2: Unprotected turn

Ex.3: Traffic lights

What does it take to learn driving?

Practical Learning

- Practice vehicle controls
- Practice application of the driving rules in the real-world

[source: https://gonpass.com/]

What does it take for an ADS to learn driving?

Theoretical Learning

 Learn the rules of the road that dictate driving decision

Training datasets f(BCs, ODD)

Driving model learning

What does it take for an ADS to learn driving?

Practical Learning

- Practice vehicle controls
- Practice application of the driving rules (BCs) in the realworld (ODD)

1. Test all BCs

Scen. 1(7): Negotiating zebra crossing

Scen. 2(3): unprotected right turn at T-junction

Scen. 2(6): traffic light w/ cycle box

2. Test BC's sensitivity to ODD variations

3. Repeat to gain confidence

Takeaway: Testing starts with BCs

Influential ODD Attributes

Influential ODD attributes

Defining driving skills

...the rules of the road that *dictate* driving *decisions*...

...so what element(s) in the scene dictate our decision?

Influential ODD attributes

Defining driving skills

Only a subset of ODD attributes dictate our decisions

Influential ODD attributes:

- Light colour
- Cycle box
- Intersection clearance

Influential ODD Attributes

Takeaways:

- Influential attributes characterise the driving skill,
 i.e. making the right decision = Behavioural Competency
- 2. Influential attributes are specific to each Behavioural Competency

Coverage strategy

Coverage Strategy

Putting everything together...

Coverage Strategy

 $BCs \rightarrow Influential attr. \rightarrow combinations \rightarrow variations f(ODD) \rightarrow SPIs results$

Note 1 The application defines the ODD and the required BCs (e.g. Robotaxi, highwaypilot etc)

Note 2 each BC's ODD is equal to or a subset of the application's ODD

Note 3 not all combinations of influential attributes are valid

Takeaways:

- The ODD exploration is driven by the influential attr. ⇒ we test what matters
- 2) The ODD exploration is contained by the influential attr. \Rightarrow no explosion of scenarios

Measuring success

Measuring Success

 $BCs \rightarrow Influential attr. \rightarrow combinations \rightarrow variations f(ODD) \rightarrow SPIs results$

Takeaway: Success measured by Application's SPIs and individual BC's SPIs

Thank you!

